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ABSTRACT 

 

Standing at 589 ft tall, Block 185 will be the newest addition to Austin’s ever growing 

skyline and the fourth  tallest tower in the city. Located in the developing waterfront district, the 

project site is situated just 250’ north of the Colorado River and is bounded on the west by one of 

its major tributaries, Shoal Creek. To accommodate the six-story below grade parking garage, a 

slurry diaphragm wall system was selected for support of excavation. This design-build method 

of SOE was selected to meet the myriad of challenges at this site, which included excavation 

extending some 45 ft below the groundwater table through highly variable geologic 

stratifications from loose sands to weak shales to highly competent limestone. The construction 

and engineering challenges, solutions, and lessons learned on this project will be explored and 

discussed in this paper. 

 

INTRODUCTION 

 

Block 185 is located at the northwest corner of the intersection of Cesar Chavez Street and 

Nueces Street in downtown Austin, TX.  This is the final parcel of what was formerly the Green 

Water Treatment Plant (GWTP), which was demolished in 2010 and split into 4 separate parcels 

as illustrated in Figure 1.   

 

 
 

Figure 1.  Green Water Treatment Plant redevelopment plan 
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The project site is located just 250’ north of the Colorado river and bounded on the south by 

Cesar Chavez street, a highly traveled 4-lane surface street and one of the main arteries into 

downtown Austin off State Highway Loop 1 (MoPac Expressway).  To the north the site is 

bounded by 2nd Street, which includes a single span, deep foundation supported suspension 

bridge over Shoal Creek that was constructed in 2015 as part of the GWTP redevelopment plan.  

To the west the site is bounded by Shoal Creek, which is the largest of Austin’s north urban 

watersheds with a total length of 11 miles and feeding approximately 8,000 acres of runoff to the 

Colorado River.   

 

 

 
Figure 2.  Overview of the project site 

 
The planned development for the project site included an architecturally unique 37-story 

office tower with 6 levels of below grade parking.  At a total height of 589 feet the development 

will be the 4th tallest building in Austin and the tallest office tower in Texas outside of Dallas or 

Houston.  Prior to beginning construction, the development had already been leased in its 

entirety to Google, who is currently leasing multiple floors in a tower just one block to the 

northeast.   

 
EXISTING SITE AND SUBSURFACE CONDITIONS 

 
During the demolition of the GWTP the existing 20’ – 30’ of below grade basement 

structures were backfilled and compacted.  The existing grade at the project site sloped from 

approximately elevation 466 at the north (2nd Street) to approximately elevation 452 at the south 

(Cesar Chavez Street).  This significant grade change occurred over approximately 275 linear 

feet.   

The native subsurface soils varied widely from north to south, with more cohesive and 

competent soil and rock disappearing moving south towards the Colorado River as illustrated in 

Table 1 and Figure 3. 
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Table 1.  Subsurface Soil Stratums 
 

Layer Description Depths  

(North 

Extent) 

Depths  

(South Extent) 

Fill  Sandy Lean Clays (CL) and Clayey 

Sands (SC) 

0’ to 20’ 0’ to 20’ 

In Situ Soils Sandy Lean Clays (CL), Fact Clays 

(CH), Poorly Graded Sands (SP), Silty 

Sands (SM) 

20’ to 30’ 10’ to 50’ 

Buda 

Limestone 

Light gray to gray, variable weathering, 

some fresh and very intact, up to 7,000 

PSI 

20’ to 45’ N/A – Not 

Present 

Del Rio Shale Dark gray to gray, clayey shale, low 

strength (< 750 PSI) 

35’ to 70’ 50’ to 70’ 

 

 
Figure 3.  Typical soil profile north to south 

 

 
 

Figure 4.  Shoal Creek MSE Wall 
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Additionally, as part of the GWTP decommissioning and deconstruction the banks of Shoal 

Creek were improved with the construction of a large mechanically stabilized earth (MSE) wall 

as shown in Figure 4, which was only 10’ to 15’ west of the project property line.   

 

DESIGN AND CONSTRUCTION CONSIDERATIONS 

 

Malcolm Drilling, Inc. (MDCI) engaged GEI Consultants, Inc. (GEI) for the design of 

approximately 950 linear feet of support of excavation for the project.  A slurry diaphragm wall 

system was selected as the optimal design-build solution for the project to account for the myriad 

construction challenges including the excavation depth below groundwater, the variable 

subsurface soils conditions, and the overall cost and schedule benefits.   

 

 
 

Figure 5.  Soil nail wall and guide wall construction 

 

Initial Support of Excavation 

In order to prepare the site for diaphragm wall construction the site first needed to be leveled.  

Temporary soil nail and shotcrete walls were installed along the northern portion of the site and 

extending approximately half way down the east (along Nueces Street) and west (along Shoal 

Creek) walls.  The soil nail walls were used to maintain the existing roadways, sidewalks, and 

embankments while allowing the site to be brought down to a level working pad elevation.  

MDCI partnered with Dallas-based contractor Oscar Orduno, Inc. for the installation of the soil 

nail and shotcrete walls.   
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Once the soil nail walls were complete and the site was leveled, construction of the 

temporary concrete guide walls began concurrent with the mobilization of the slurry diaphragm 

wall gear, as shown in Figure 5. 

 

Groundwater 

The design of the support of excavation system was greatly influenced by the depth the 

excavation was extending below groundwater.  Firstly, because the excavation was extending 

some 40 feet below the groundwater through non-cohesive and high transmissivity soils a cut-off 

wall shoring system was required.  Secondly, that depth below groundwater meant that the water 

pressure was a huge driver of the overall loading and design of the shoring system.   

In the temporary condition the wall had to be designed to account for 40 feet of water pressure, 

roughly equivalent to 50 kips per lineal foot of wall.  In the permanent condition, the wall was 

required to be designed to resist the 100-year flood elevation, which was 15’ higher for a total of 

55 feet of water pressure.  Figure 6 shows an overlay of the water pressure diagram through a 

cross-section on the west wall. 
 

 
 

Figure 6.  Water pressure diagram. 
 

Diaphragm Wall 

The slurry diaphragm wall system was chosen to provide a full groundwater cut-off system 

and to accommodate the high water pressure loading as well as the highly variable subsurface 

soils, which included very competent, intact, and high strength limestone.   

The diaphragm wall was 800mm thick and extended approximately 8’ to 10’ below the 

bottom of excavation into the Del Rio Shale formation for total panel lengths of approximately 

72’ on average.  In the temporary condition the diaphragm wall was laterally supported by (6) 

rows of tieback anchors.  In the permanent condition the diaphragm wall is laterally supported by 

the interior floors slabs and the tieback anchors are detensioned.  This is one key advantage of a 
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slurry diaphragm wall system – that it serves as both the temporary and permanent support of 

excavation and eliminates the need to construct a supplemental permanent basement wall in front 

of a temporary shoring wall.   
 

Tiebacks 

In the temporary condition the wall is supported with temporary tieback anchors with bond 

lengths extending into the Buda Limestone and Del Rio Shale formations.  The tiebacks were 

temporary strand anchors ranging from four to seven strands with bond lengths between 15 and 

40 feet to accommodate design loads of 110 kips to 245 kips.  

Following the installation of the permanent floor slabs the tiebacks were sequentially 

detensioned and the floor slabs became the permanent lateral support for the slurry diaphragm 

wall.   

MDCI partnered with Dallas-based contractor Oscar Orduno, Inc. for the installation of the 

tiebacks on this project.   
 

Corner Bracing 

In the northwest corner of the project the slurry diaphragm wall extended to within a few feet 

of the abutment of the West 2nd Street Bridge, which was constructed in 2015 as part of the 

GWTP redevelopment plan.  The bridge is a 160-foot single span canted parabolic arch bridge 

constructed on deep foundations.  When the bridge was originally constructed, a tangent pile 

wall was constructed on the Block 185 side of the abutment serve as shoring for the anticipated 

future below grade development at the Block 185 site.  However, at the time that future 

development was only anticipated to extend 3 levels below grade; or about 40’ higher than the 

actual tip of the slurry diaphragm wall for Block 185. 

Due to the presence of the tangent pile wall and abutment drilled shafts tiebacks could not be 

used in the NW corner.  4 levels of internal corner bracing were used to replace the tiebacks in 

this corner.  Additionally, the slurry diaphragm wall design had to accommodate some 350 kips 

of lateral loading from the abutment drilled shafts.   
 

 
 

Figure 7.  Existing 2nd Street Bridge at northwest corner 
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Lateral Earth Analyses 

The diaphragm wall was analyzed for two separate conditions, the temporary condition 

where the wall was fully supported by tiebacks, internal braces, and external wales and the 

permanent condition where the wall is fully-supported by the basement floor slabs. 

In the temporary condition, the loading was analyzed using WALLAP where the wall is 

analyzed as a beam-on-elastic foundation (Figure 8).  The soil and struts are treated as elastic or 

elastic-perfectly plastic springs, there is an initial spring with displacement equal to zero (at-rest 

conditions).  As the model is run movement causes forces within the springs to increase or 

decrease until limiting values are reached (Ka and Kp). 

 

 
 

Figure 8.  Simplified beam-on-elastic foundation model (USACE) 

 

In the permanent condition the wall was analyzed using typical Equivalent Fluid Pressures 

using At-Rest conditions (Figure 9).  This method used pressures that were generally 

recommended in the site geotechnical report. 

 

 
 

Figure 9.  Example of typical equivalent fluid pressures. 

 

IFCEE 2021 GSP 324 149

© ASCE

 IFCEE 2021 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

IH
A

B
 A

L
L

A
M

 o
n 

05
/1

7/
21

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



CONSTRUCTION 

 

Mobilization and Site Utilization 

Logistics was primary challenge for the construction of this project due to a limited site 

footprint.  The site configuration including access/egress, installation sequence, and support 

equipment layout was carefully planned prior to mobilization.   

The equipment used to install the slurry diaphragm wall included a Bauer BC40 Hydromill 

Cutter mounted on a Bauer MC96 crane, one hydraulic clam shell grab mounted on a Liebherr 

HS8100 crane, a 200T class support crane, a Bauer BE550 Desander, a centrifuge, and (8) 

21,000-gallon open top mixing tanks.   

The general site configuration is shown below in Figure 10.  The rebar cage fabrication area 

was re-located multiple times as needed during the installation process.   

 

 
 

Figure 10.  Site configuration for Diaphragm Wall Construction. 

 

Diaphragm Wall Construction 

Temporary reinforced concrete guide walls were constructed along the alignment of the 

slurry diaphragm wall to be utilized as a guide for the excavation equipment and the setting of 

the rebar cages.  The guide walls consisted of two parallel reinforced concrete beams that were 

1’ to 2’ wide by 3’ to 4’ deep.  Extremely high levels of accuracy and quality control for the 

guide wall construction are critical as they are used to maintain diaphragm wall panel verticality, 

location, and rebar cage elevation control.  The tops of the guide walls were used for the 

installation of hard survey control points for the diaphragm wall construction as well.   
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Figure 11.  Guide wall construction. 

 

Excavation of the diaphragm wall panels was accomplished using a Bauer BC40 Hydromill 

mounted on a Bauer MC96 crane and with a Liebherr HSG 5-18 hydraulic grab mounted on a 

Liebherr HS 8100 Crane.   

The BC40 Hydromill is an extremely powerful, versatile, and proven machine with a 41-foot 

guide frame equipped with steering flaps and real time verticality monitoring to control the 

plumbness of the excavation.  At the bottom of the large, rigid steel frame are two cutting wheels 

that can swapped out to match the precise width of the required diaphragm wall design and 

cutting teeth that can be changed to accommodate that type of soil or rock being excavated.   

 

 
 

Figure 12.  BC40 Hydromill mounted on MC96 crane. 
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The Liebherr HSG 5-18 hydraulic grab is a very powerful, heavy duty machine specifically 

designed for slurry wall construction with a 21-foot long guide frame equipped with steering 

flaps to control verticality of the excavation.  At the bottom of the rigid frame are two cutting 

jaws again matched to the precise width of the required diaphragm wall design and equipped 

with changeable teeth to accommodate the type of soil or rock being excavated.  A hydraulic 

grab or other piece of equipment is required to start the excavation of each panel down to a 

minimum depth of 10’ to 12’.  The BC40 hydromill has to be submerged in water or slurry down 

to this depth and below its pumps and gearboxes before it can be operated.   

 

 
 

Figure 13.  Liebherr HSG 5-18 mounted on Liebherr HS8100 crane. 

 

Quality control of the panel excavation is critical for the slurry diaphragm wall system.  

Vertical deviation of the excavation is monitored in real time in the cab of the excavation via the 

hydromill and the panel can be adjusted via the steerable flaps on the guide frame.  Prior to 

concrete and rebar placement, the panel excavation is again independently checked via a 

KODEN drilling monitor, which uses ultrasonic waves to measure a precise profile of the panel 

excavation to confirm it falls with acceptable tolerances. 
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Figure 14.  Real-time monitoring by B-Tronics of panel excavation. 
 

Panel reinforcing cages were constructed horizontally on the ground at the project site and 

later uplifted to a vertical position for installation.  Bracing embeds with shear studs, tieback 

blockout pipe sleeves, and slab shear keyways were all installed in the rebar cage prior to lifting 

and installation.  Right angle corner panel cages were constructed, lifted, and installed 

monolithically as well.  All of the cages were lifted with the single 200T support crane and 

brought to the panel for installation, with the heaviest cage weighing approximately 15 tons. 
 

 
 

Figure 15.  Primary panel rebar cage. 
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Placement of the 5,000 PSI design strength concrete is achieved via tailgate placement into 

gravity tremies.  Each primary panel pour was approximately 180 CY and required the use of 

three simultaneous tremies.  Each secondary panel pour was approximately 75 CY and required 

the use of two simultaneous tremies.  In total approximately 6,800 CY of structural concrete 

were placed for the slurry diaphragm wall.  

Quality control of the concrete mix design is a critical factor for the slurry diaphragm wall 

system.  An extensive pre-production trial batch program was implemented prior to mobilization 

for this project to develop a mix with local suppliers that met the required design strengths and 

workability parameters.  During construction, continuous testing of the delivered concrete for 

slump, spread, flowability, slump retention, and segregation was implemented prior to the 

concrete going in the ground.   

 

 
 

Figure 16.  Primary Panel concrete placement with simultaneous excavation in 

background. 

 

CONCLUSIONS 

 

As Austin continues to grow and expand the need for and economic feasibility of deeper 

excavations will continue to introduce construction challenges that are new to this market as well 

as to the Dallas and Houston metropolitan areas.   

The Block 185 project required an innovative design-build approach that had to address a 

myriad of site constraints and difficult geotechnical conditions in addition to an aggressive 
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project schedule and a very competitive bid environment.  The slurry diaphragm wall was able to 

provide a full water cut-off system that could penetrate the Buda Limestone formation and serve 

as both the temporary and permanent basement wall, eliminating the need for a supplemental 

permanent basement wall.  Additionally, the stiffness and rigidity of the system was well-suited 

to handle the high surcharge loads from adjacent structures and improvements with limited 

deflections or disruptions in a tight urban area.   

 

 
 

Figure 17.  Aerial view of the completed diaphragm wall and excavation. 
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